Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Lihua Liu, ${ }^{\text {a }}$ Qian-Feng Zhang ${ }^{\text {a }}$ * and Wa-Hung Leung ${ }^{\text {b }}$

${ }^{\text {a Department of Chemistry and Chemical }}$ Engineering, Anhui University of Technology, Maanshan, Anhui 243002, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail: zhangqf@ahut.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.042$
$w R$ factor $=0.084$
Data-to-parameter ratio $=20.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tri- μ-chloro-bis[$\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)rhodium(III)] tetrafluoroborate

In the cation of the title compound, $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)_{2}\right] \mathrm{BF}_{4}$, two $\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ fragments are linked by three bridging Cl atoms. Each rhodium center has a pseudo-octahedral coordination geometry, with a $\mathrm{C}_{5} \mathrm{Me}_{5}$ group occupying three positions and three Cl atoms completing the coordination. The average $\mathrm{Rh}-\mathrm{Cl}$ bond length is $2.450 \AA$ and the average $\mathrm{Rh}-$ $\mathrm{Cl}-\mathrm{Rh}$ bond angle is 81.6°.

Comment

Arene-rhodium complexes, such as $[\mathrm{RhCl}(\text { arene })]_{2}$ and $\left[\mathrm{RhCl}\left(\mathrm{PR}_{3}\right)\right.$ (arene)], have been extensively used as homogeneous catalysts in organic synthesis and polymerization (Lavastre \& Dixneuf, 1995; Pearson et al., 1996). Following our interest in the synthesis and catalytic reactions of [(arene)Ru]-sulfur complexes (Zhang et al., 2001), we have considered the analogous rhodium complexes. A dinuclear rhodium complex with pentamethylcyclopentadienyl ligands, $\left[\left\{\mathrm{Rh}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\right\}_{2}(\mu-\mathrm{Cl})_{3}\right] \mathrm{BF}_{4}$, (I), has been synthesized and structurally characterized, and the results are presented here.

(I)

The molecular structure of (I) is depicted in Fig. 1. Two $\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ fragments of the cation are linked by three bridging Cl atoms; one of these $(\mathrm{Cl} 3)$ has relatively long distances to the Rh atoms. The average $\mathrm{Rh}-\mathrm{Cl} 3$ bond distance of $2.470 \AA$ is $c a 0.03 \AA$ longer than the average $\mathrm{Rh}-$ Cl1/2 bond length of $2.441 \AA$; correspondingly, the angle $\mathrm{Rh} 1-\mathrm{Cl} 3-\mathrm{Rh} 2$ is slightly more acute than the angles $\mathrm{Ru} 1-$ $\mathrm{Cl} 1-\mathrm{Ru} 2$ and $\mathrm{Rh} 1-\mathrm{Cl} 2-\mathrm{Rh} 2$ (Table 1). Each Rh atom exhibits a distorted octahedral coordination, with the ring of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligand formally occupying three sites. The $\mathrm{Rh}-$ C (ring) distances span the range 2.116 (5)-2.146 (5) \AA and compare well with those found in other pentamethylcyclopentadienylrhodium(III) complexes: 2.114 (4)-2.229 (4) \AA in $\quad\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}\left(\eta^{2}-\mathrm{P}, \mathrm{O}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CHMeCH}_{2} \mathrm{OH}\right)\right] \mathrm{BF}_{4}$ (Valderrama et al., 2001) and 2.113 (10)-2.239 (9) \AA in $\left[\left(\eta-\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{5}\right) \mathrm{RhCl}\left\{\eta^{2}-P, P^{\prime}-\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NMe}^{2}\right\}\right] \mathrm{BF}_{4} \quad$ (Valderrama et al., 2003). The average $\mathrm{Cl}-\mathrm{Rh}-\mathrm{Cl}$ angle of 82.0° deviates by 8° from the ideal octahedral angle. The separation between the two Rh atoms is 3.202 (4) \AA and thus these atoms are nonbonded. The geometry of the tetrahedral $\mathrm{BF}_{4}{ }^{-}$anion is normal.

Received 18 February 2004

Accepted 26 March 2004
Online 31 March 2004

Figure 1
The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Experimental

Treatment of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}(\mu-\mathrm{Cl})\right]_{2}(80 \mathrm{mg}, 0.26 \mathrm{mmol})$ with dilute $\mathrm{HBF}_{4}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.5 \mathrm{ml}\right)$ in acetone $(20 \mathrm{ml})$ at room temperature afforded a yellow solution. This was stirred under reflux for 2 h , and then the solvent was pumped off and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ gave orange block crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): $\delta 1.75(t, 30 \mathrm{H}$, $\left.J=2.6 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{Me}_{5}\right)$. MS (FAB): $m / z 583\left(\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}_{2}(\mu-\mathrm{Cl})_{3}\right]^{+}+\right.\right.$ 1). Analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{BCl}_{3} \mathrm{~F}_{4} \mathrm{Rh}_{2}$: C 35.85 , H 4.48%; found: C 35.73, H 4.42\%.

Crystal data

$\left[\mathrm{Rh}_{2} \mathrm{Cl}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)_{2}\right] \mathrm{BF}_{4}$	$Z=2$
$M_{r}=669.42$	$D_{x}=1.791 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.1768(16) \AA$	Cell parameters from 1788
$b=11.858(2) \AA$	\quad reflections
$c=14.007(3) \AA$	$\mu=2.5-27.9^{\circ}$
$\alpha=67.534(3)^{\circ}$	$T=296(2) \mathrm{Km}$
$\beta=82.032(3)^{\circ}$	Block, orange
$\gamma=89.421(4)^{\circ}$	$0.35 \times 0.30 \times 0.28 \mathrm{~mm}$
$V=1241.6(4) \AA^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1997a) $T_{\text {min }}=0.542, T_{\text {max }}=0.629$
7407 measured reflections
$Z=2$
$D_{x}=1.791 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1788
reflections
$\mu=1.69 \mathrm{~mm}^{-1}$
$T=296$ (2) K
$0.35 \times 0.30 \times 0.28 \mathrm{~mm}$

5533 independent reflections 3807 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 15$
$l=-18 \rightarrow 17$

Refinement

$\begin{array}{ll}\text { Refinement on } F^{2} & \mathrm{H} \text {-atom parameters constrained } \\ R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042 & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right] \\ w R\left(F^{2}\right)=0.084 & (\Delta / \sigma)_{\max }<0.001 \\ S=0.96 & \Delta \rho_{\max }=0.92 \mathrm{e} \AA^{-3} \\ 5533 \text { reflections } & \Delta \rho_{\min }=-0.97 \mathrm{e} \AA^{-3} \\ \text { 271 parameters } & \end{array}$
271 parameters
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Rh1-C2	$2.116(5)$	$\mathrm{Rh} 2-\mathrm{C} 13$	$2.106(5)$
$\mathrm{Rh} 1-\mathrm{C} 4$	$2.119(5)$	$\mathrm{Rh} 2-\mathrm{C} 15$	$2.117(5)$
$\mathrm{Rh} 1-\mathrm{C} 1$	$2.123(5)$	$\mathrm{Rh} 2-\mathrm{C} 12$	$2.123(5)$
$\mathrm{Rh} 1-\mathrm{C} 3$	$2.132(5)$	$\mathrm{Rh} 2-\mathrm{C} 14$	$2.123(5)$
$\mathrm{Rh} 1-\mathrm{C} 5$	$2.146(5)$	$\mathrm{Rh} 2-\mathrm{C} 11$	$2.125(5)$
$\mathrm{Rh} 1-\mathrm{Cl} 1$	$2.4358(13)$	$\mathrm{Rh} 2-\mathrm{Cl} 2$	$2.4403(13)$
$\mathrm{Rh} 1-\mathrm{Cl} 2$	$2.4396(15)$	$\mathrm{Rh} 2-\mathrm{Cl} 1$	$2.4468(14)$
$\mathrm{Rh} 1-\mathrm{Cl} 3$	$2.4697(13)$	$\mathrm{Rh} 2-\mathrm{Cl} 3$	$2.4705(13)$
$\mathrm{Cl} 1-\mathrm{Rh} 1-\mathrm{Cl} 2$	$82.30(5)$	$\mathrm{Cl} 1-\mathrm{Rh} 2-\mathrm{Cl} 3$	$81.83(4)$
$\mathrm{Cl} 1-\mathrm{Rh} 1-\mathrm{Cl} 3$	$82.07(4)$	$\mathrm{Rh} 1-\mathrm{Cl} 1-\mathrm{Rh} 2$	$81.94(4)$
$\mathrm{Cl} 2-\mathrm{Rh} 1-\mathrm{Cl} 3$	$81.70(5)$	$\mathrm{Rh} 1-\mathrm{Cl} 2-\mathrm{Rh} 2$	$82.00(4)$
$\mathrm{Cl} 2-\mathrm{Rh} 2-\mathrm{Cl} 1$	$82.06(5)$	$\mathrm{Rh} 1-\mathrm{Cl} 3-\mathrm{Rh} 2$	$80.79(4)$
$\mathrm{Cl} 2-\mathrm{Rh} 2-\mathrm{Cl} 3$	$81.67(5)$		

All H atoms were found in a difference map, but were then placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and included in the refinement using the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1997b); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Financial support from Natural Science Foundation of China (grant No. 90301005) and the Hong Kong Research Grants Council is gratefully acknowledged.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Lavastre, O. \& Dixneuf, P. H. (1995). J. Organomet. Chem. 488, C9-12.
Pearson, A. J., Zhang, P. \& Lee, K. (1996). J. Org. Chem. 61, 6581-6588. Sheldrick, G. M. (1997a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Valderrama, M., Contreras, R., Araos, G. \& Boys, D. (2001). J. Organomet. Chem. 619, 1-6.
Valderrama, M., Contreras, R. \& Boys, D. (2003). J. Organomet. Chem. 665, 712.

Zhang, Q. F., Chueng, F. K. M., Wong, W. Y., Williams, I. D. \& Leung, W. H. (2001). Organometallics, 20, 3777-3781.

