Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lihua Liu,^a Qian-Feng Zhang^a* and Wa-Hung Leung^b

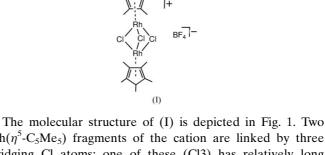
^aDepartment of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, People's Republic of China, and ^bDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail: zhangqf@ahut.edu.cn

Key indicators

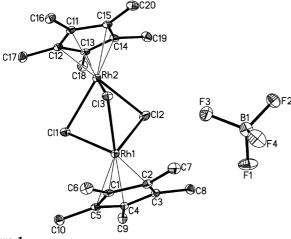
Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.042 wR factor = 0.084 Data-to-parameter ratio = 20.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Tri- μ -chloro-bis[(η^5 -pentamethylcyclopentadienyl)rhodium(III)] tetrafluoroborate

In the cation of the title compound, $[Rh_2Cl_3(C_{10}H_{15})_2]BF_4$, two Rh(η^5 -C₅Me₅) fragments are linked by three bridging Cl atoms. Each rhodium center has a pseudo-octahedral coordination geometry, with a C₅Me₅ group occupying three positions and three Cl atoms completing the coordination. The average Rh–Cl bond length is 2.450 Å and the average Rh– Cl–Rh bond angle is 81.6°.


Comment

Arene–rhodium complexes, such as $[RhCl(arene)]_2$ and $[RhCl(PR_3)(arene)]$, have been extensively used as homogeneous catalysts in organic synthesis and polymerization (Lavastre & Dixneuf, 1995; Pearson *et al.*, 1996). Following our interest in the synthesis and catalytic reactions of [(arene)Ru]–sulfur complexes (Zhang *et al.*, 2001), we have considered the analogous rhodium complexes. A dinuclear rhodium complex with pentamethylcyclopentadienyl ligands, $[{Rh(C_{10}H_{15})}_2(\mu-Cl)_3]BF_4$, (I), has been synthesized and structurally characterized, and the results are presented here.

 $Rh(\eta^5-C_5Me_5)$ fragments of the cation are linked by three bridging Cl atoms; one of these (Cl3) has relatively long distances to the Rh atoms. The average Rh-Cl3 bond distance of 2.470 Å is *ca* 0.03 Å longer than the average Rh– Cl1/2 bond length of 2.441 Å; correspondingly, the angle Rh1-Cl3-Rh2 is slightly more acute than the angles Ru1-Cl1-Ru2 and Rh1-Cl2-Rh2 (Table 1). Each Rh atom exhibits a distorted octahedral coordination, with the ring of the C₅Me₅ ligand formally occupying three sites. The Rh-C(ring) distances span the range 2.116 (5)-2.146 (5) Å and compare well with those found in other pentamethylcyclopentadienylrhodium(III) complexes: 2.114 (4)-2.229 (4) Å $[(\eta^5-C_5Me_5)RhCl(\eta^2-P,O-Ph_2PCH_2CHMeCH_2OH)]BF_4$ in (Valderrama *et al.*, 2001) and 2.113 (10)–2.239 (9) Å in $[(\eta - C_5 -$ Me₅)RhCl{ η^2 -*P*,*P'*-(Ph₂P)₂NMe}]BF₄ (Valderrama *et al.*, 2003). The average Cl-Rh-Cl angle of 82.0° deviates by 8° from the ideal octahedral angle. The separation between the two Rh atoms is 3.202 (4) Å and thus these atoms are nonbonded. The geometry of the tetrahedral BF₄⁻ anion is normal.

Received 18 February 2004 Accepted 26 March 2004 Online 31 March 2004

Figure 1

The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Experimental

Treatment of $[(\eta^5-C_5Me_5)RhCl_2(\mu-Cl)]_2$ (80 mg, 0.26 mmol) with dilute HBF₄ (1 *M* in Et₂O, 1.5 ml) in acetone (20 ml) at room temperature afforded a yellow solution. This was stirred under reflux for 2 h, and then the solvent was pumped off and the residue was extracted with CH₂Cl₂ (10 ml). Recrystallization from CH₂Cl₂–Et₂O gave orange block crystals. ¹H NMR (CDCl₃, p.p.m.): δ 1.75 (*t*, 30H, J = 2.6 Hz, C₅Me₅). MS (FAB): m/z 583 ([{ $\eta^5-C_5Me_5$)Rh}₂(μ -Cl)₃]⁺ + 1). Analysis calculated for C₂₀H₃₀BCl₃F₄Rh₂: C 35.85, H 4.48%; found: C 35.73, H 4.42%.

Crystal data

$[Rh_2Cl_3(C_{10}H_{15})_2]BF_4$	Z = 2
$M_r = 669.42$	$D_x = 1.791 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
$a = 8.1768 (16) \text{\AA}$	Cell parameters from 1788
b = 11.858 (2) Å	reflections
c = 14.007 (3) Å	$\theta = 2.5 - 27.9^{\circ}$
$\alpha = 67.534 \ (3)^{\circ}$	$\mu = 1.69 \text{ mm}^{-1}$
$\beta = 82.032 \ (3)^{\circ}$	T = 296 (2) K
$\gamma = 89.421 \ (4)^{\circ}$	Block, orange
V = 1241.6 (4) Å ³	$0.35 \times 0.30 \times 0.28 \text{ mm}$
Data collection	

Data collection

Bruker SMART CCD area-detector	5533 independent reflections
diffractometer	3807 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.038$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1997a)	$h = -10 \rightarrow 10$
$T_{\min} = 0.542, \ T_{\max} = 0.629$	$k = -10 \rightarrow 15$
7407 measured reflections	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^2(F_o^2)]$
$wR(F^2) = 0.084$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.96	$\Delta \rho_{\rm max} = 0.92 \ {\rm e} \ {\rm \AA}^{-3}$
5533 reflections	$\Delta \rho_{\rm min} = -0.97 \mathrm{e} \mathrm{\AA}^{-3}$
271 parameters	

Table 1

\$

5.0

Selected geometric parameters (\dot{A}, \circ) .

Rh1-C2	2.116 (5)	Rh2-C13	2.106 (5)
Rh1-C4	2.119 (5)	Rh2-C15	2.117 (5)
Rh1-C1	2.123 (5)	Rh2-C12	2.123 (5)
Rh1-C3	2.132 (5)	Rh2-C14	2.123 (5)
Rh1-C5	2.146 (5)	Rh2-C11	2.125 (5)
Rh1-Cl1	2.4358 (13)	Rh2-Cl2	2.4403 (13)
Rh1-Cl2	2.4396 (15)	Rh2-Cl1	2.4468 (14)
Rh1-Cl3	2.4697 (13)	Rh2-Cl3	2.4705 (13)
Cl1-Rh1-Cl2	82.30 (5)	Cl1-Rh2-Cl3	81.83 (4)
Cl1-Rh1-Cl3	82.07 (4)	Rh1-Cl1-Rh2	81.94 (4)
Cl2-Rh1-Cl3	81.70 (5)	Rh1-Cl2-Rh2	82.00 (4)
Cl2-Rh2-Cl1	82.06 (5)	Rh1-Cl3-Rh2	80.79 (4)
Cl2-Rh2-Cl3	81.67 (5)		

All H atoms were found in a difference map, but were then placed in calculated positions (C-H = 0.96 Å) and included in the refinement using the riding-model approximation, with $U_{\rm iso}({\rm H}) =$ $1.5U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997b); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Financial support from Natural Science Foundation of China (grant No. 90301005) and the Hong Kong Research Grants Council is gratefully acknowledged.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Lavastre, O. & Dixneuf, P. H. (1995). J. Organomet. Chem. 488, C9-12.

Pearson, A. J., Zhang, P. & Lee, K. (1996). J. Org. Chem. 61, 6581-6588.

Sheldrick, G. M. (1997a). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Valderrama, M., Contreras, R., Araos, G. & Boys, D. (2001). J. Organomet. Chem. 619, 1–6.

Valderrama, M., Contreras, R. & Boys, D. (2003). J. Organomet. Chem. 665, 7– 12.

Zhang, Q. F., Chueng, F. K. M., Wong, W. Y., Williams, I. D. & Leung, W. H. (2001). Organometallics, 20, 3777–3781.